Research Publications: UM-SG-RS-2014-26



Land cover effects on runoff patterns in eastern Piedmont (USA) watersheds.




Julian, JP; Gardner, RH


Hydrological Processes
28 ( 3 ) : 1525 - 1538




Physiography and land cover determine the hydrologic response of watersheds to climatic events. However, vast differences in climate regimes and variation of landscape attributes among watersheds (including size) have prevented the establishment of general relationships between land cover and runoff patterns across broad scales. This paper addresses these difficulties by using power spectral analysis to characterize area-normalized runoff patterns and then compare these patterns with landscape features among watersheds within the same physiographic region. We assembled long-term precipitation and runoff data for 87 watersheds (first to seventh order) within the eastern Piedmont (USA) that contained a wide variety of land cover types, collected environmental data for each watershed, and compared the datasets using a variety of statistical measures. The effect of land cover on runoff patterns was confirmed. Urban-dominated watersheds were flashier and had less hydrologic memory compared with forest-dominated watersheds, whereas watersheds with high wetland coverage had greater hydrologic memory. We also detected a 10-15% urban threshold above which urban coverage became the dominant control on runoff patterns. When spectral properties of runoff were compared across stream orders, a threshold after the third order was detected at which watershed processes became dominant over precipitation regime in determining runoff patterns. Finally, we present a matrix that characterizes the hydrologic signatures of rivers based on precipitation versus landscape effects and low-frequency versus high-frequency events. The concepts and methods presented can be generally applied to all river systems to characterize multiscale patterns of watershed runoff. Copyright (c) 2013 John Wiley & Sons, Ltd.

Related Research Project(s) Funded by Maryland Sea Grant:

Maryland Sea Grant Topic(s):

'Related Research Project(s)' link to details about research projects funded by Maryland Sea Grant that led to this publication. These details may include other impacts and accomplishments resulting from the research.

'Maryland Sea Grant Topic(s)' links to related pages on the Maryland Sea Grant website.

The Blue Crab: Callinectes Sapidus

An essential resource for researchers, students, and managers.  Get your copy today!

pile of cooked crabs