Understanding the Distribution and Ecology of the Mysid Neomysis americana, a Key Forage Species in Chesapeake Bay

Principal Investigator:

Ryan Woodland

Start/End Year:

2018 - 2020


Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science

Co-Principal Investigator:

Hongsheng Bi, Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science; Elizabeth North, Horn Point Laboratory, University of Maryland Center for Environmental Science


Strategic focus area:

Sustainable fisheries and aquaculture


There is a concerted effort to move away from traditional single species fisheries management in Chesapeake Bay toward a more holistic management framework that considers the interactions between fishery and non-fishery species and how their dynamics are linked to their environment. This framework, termed ecosystem-based fisheries management (EBFM), requires an understanding of the role of forage in sustaining upper trophic levels and the goal of this proposed research project is to fill important knowledge gaps related to the forage base of key commercial and recreational fish species in Chesapeake Bay. This project would seek to establish valuable information on how mysids, particularly Neomysis americana, are distributed relative to key environmental, physical and biological gradients within two tributaries known to serve as important nurseries for a range of commercially and recreationally important fisheries species in Chesapeake Bay, the Patuxent and Choptank Rivers. This project will directly address two focus areas within the Maryland Sea Grant 2018-2020 Strategic Plan - Healthy Coastal Ecosystems, and Sustainable Fisheries and Aquaculture. Specific objectives of this proposal include:

  1. Measure patterns in mysid distribution and abundance within the Patuxent and Choptank Rivers from spring to autumn;
  2. Analyze demographic parameters in each tributary during each season;
  3. Use natural biomarkers of diet to quantify patterns in mysid feeding relative to local water quality; and
  4. Conduct a critical, initial analysis of the relationship(s) between mysid dynamics and key physical and environmental gradients, including oxygenation of bottom waters.

Mysids occupy an important position in coastal ecosystems because they are important prey species for juvenile fish and because they provide an important link between lower trophic levels and finfish production. The Patuxent and Choptank Rivers provide an excellent opportunity to compare the seasonal distribution of mysids in two ecosystems that are broadly representative of many Chesapeake Bay tributaries. Field efforts will focus on sampling during the late spring to early fall months of May, June, July, August and September, periods in which high mysid abundance is expected to coincide with an interval of critical growth and foraging for many young-of-the-year fish species, the timing of peak secondary production and prevalence of hypoxic conditions. Mysids will be surveyed using high resolution sonar and traditional nets during the day and at night in the oligo-mesohaline region of each tributary. Cross-channel transects will provide estimates of relative abundance as well as specimens for trophic analysis using stable isotope natural biomarkers.

These findings will provide insight into the spatial and temporal distribution of a key trophic resource for fisheries species in Chesapeake Bay. Linking patterns in N. americana distribution, relative abundance, population demographics and feeding to environmental gradients within and between tributaries, this project will provide a crucial first step in understanding how local water quality can affect the ecology of a crucial forage taxon through space and time in Chesapeake Bay tributaries. 

The Blue Crab: Callinectes Sapidus

An essential resource for researchers, students, and managers.  Get your copy today!

pile of cooked crabs

5825 University Research Court, Suite 1350 | College Park, MD 20740 | Phone: (301) 405-7500 | Fax: (301) 314-5780 | Contact Us

  • Twitter
  • Facebook
  • YouTube
  • Flickr
  • RSS