Developing a Technology to Induce Sterility in an Emerging Marine Aquaculture Species, Sablefish, by Disrupting Primordial Germ Cell Development

Principal Investigator:

Ten-Tsao Wong

Start/End Year:

2016 - 2020


University of Maryland, Baltimore County

Co-Principal Investigator:

Yonathan Zohar, University of Maryland, Baltimore County; Adam Luckenbach and William Fairgrieve, NOAA Northwest Fisheries Science Center


Strategic focus area:

Sustainable fisheries and aquaculture


We have developed a technology to efficiently produce infertile fish by disrupting primordial germ cell development in fish embryos. The technology uses a bath immersion to administer a Morpholino oligomer (MO) against Deadend (Dnd), an essential protein for early germ cell development in fish. This approach has been successfully used in the zebrafish, trout and salmon. The goal of this proposal is to examine the feasibility of applying this technology to sablefish. This goal will be achieved via the following two specific objectives: 1) Identify a suitable sablefish dnd-MO for immersion protocol development; 2) Implement the embryo immersion protocol, evaluate the level of sterility achieved, and optimize treatment conditions to achieve 100% sterility. Sablefish is a high-value species native to the North Pacific. Because of its fast growth rate and high market value, sablefish is considered an excellent marine aquaculture species globally and a rising marine aquaculture species in the U.S. and Canada. Although sablefish can be completely reared in land-based facilities, at present all commercial grow-out operations are in open water using floating net pens. Hence, there is an urgent need to alleviate risks of genetic contamination of wild populations that may cross-breed with cultured escapees. The production and use of reproductively sterile sablefish would be one of the most effective methods to address this concern and promote sustainable and ecologically-responsible aquaculture. Sterile/infertile sablefish that escape aquaculture containment would not be able to reproduce with each other or with wild fish, thereby preventing genetic contamination of wild stocks. If successful, this technology will strengthen the U.S. aquaculture industry by providing reliable and abundant sterile sablefish fingerlings for grow-out production. Indeed, because sterile fish divert little or no energy toward gonadal development, they may exhibit superior growth in aquaculture compared to fertile fish.

The Blue Crab: Callinectes Sapidus

An essential resource for researchers, students, and managers.  Get your copy today!

pile of cooked crabs

5825 University Research Court, Suite 1350 | College Park, MD 20740 | Phone: (301) 405-7500 | Fax: (301) 314-5780 | Contact Us

  • Twitter
  • Facebook
  • YouTube
  • Flickr
  • RSS