Science Serving Maryland's Coasts

Research Publications: UM-SG-RS-2008-13


Cryptic ecological diversification of a planktonic estuarine copepod, Acartia tonsa.




Chen, G; Hare, MP


Molecular Ecology 17(6):1451-1468




The recent discovery of cryptic species in marine holoplankton, organisms that 'drift' in oceanic currents throughout their life cycle, contrasts with their potential for long-distance passive dispersal and presumably high gene flow. These observations suggest that holoplankton species are adapting to surprisingly small-scale oceanographic features and imply either limited dispersal or strong selection gradients. Acartia tonsa is a widespread and numerically dominant estuarine copepod containing deep mitochondrial lineages within and among populations along the northwestern Atlantic coast. In this study, we intensively investigated A. tonsa populations in Chesapeake Bay with the goals of testing species status for the deep lineages and testing for their association with environmental features over space and time. Phylogenetic analyses of DNA sequences from mitochondrial cytochrome c oxidase I (mtCOI) and the nuclear ribosomal internal transcribed spacer (nITS) resolved two concordant monophyletic clades. Deep divergence between the two clades (13.7% uncorrected sequence divergence for mtCOI and 32.2% for nITS) and genealogical concordance within sympatric populations strongly suggest that the two clades represent reproductively isolated cryptic species. Based on restriction fragment length polymorphisms of mtCOI, representatives from the two clades were found consistently associated with contrasting salinity regimes (oligohaline vs. meso-polyhaline) with an overlap between 2 and 12 PSU in samples from 1995 to 2005. Finding these patterns in one of the best-known estuarine copepods reinforces the conclusion that marine biodiversity is underestimated, not only in terms of species numbers, but also with respect to niche partitioning and the potential importance of ecological divergence in marine holoplankton.

Related Research Project(s) Funded by Maryland Sea Grant: 

Maryland Sea Grant Topic(s): 

'Related Research Project(s)' link to details about research projects funded by Maryland Sea Grant that led to this publication. These details may include other impacts and accomplishments resulting from the research.

'Maryland Sea Grant Topic(s)' links to related pages on the Maryland Sea Grant website.