Each summer, flotillas of sea nettles invade the Chesapeake Bay. By July they have often grown so thick in the Bay's creeks, rivers and open waters that "lathers begin an annual evacuation of the water," so for scientists. Slinging nettles and other gelatinous zooplankton have been enticing researchers to get as close as they can to determine just what role these jellied creatures — not only nettles but also ctenophores or comb jellies — have on the Bay ecosystem.

"For years, researchers worldwide tended to ignore gelatinous animals and their ecological function," says Jennifer Purcell, a scientist at the University of Maryland's Center for Environmental and Estuarine Studies (CEES). "They can be difficult to study and sometimes are simply a nuisance, clogging the nets of researchers trying to get Bay samples of zooplankton or fish."

But research over this last eight years by Purcell and other scientists in the Chesapeake region, Ed Houde at the CEES Chesapeake Biological Lab and Denise Breitburg at the Benedict Estuarine Research Lab, is making it impossible for ecologists to ignore these creatures. They are voracious feeders. "During the summer," says Ed Houde, "sea nettles are probably the most important predator (Continued on page 2)
The Chesapeake Bay's stinging jellyfish, called sea nettles, and their non-stinging cousins, the comb jellies, are both voracious feeders. Researchers and resource managers alike want to know just how many young fish these jelly-like feeders are taking from the system and how they may affect adult abundance.

Jellyfish in the Chesapeake

Until the mid-1960s, hardly more was known about the sea nettle (Chrysaora quinquecirrha) than its basic biology, namely that it has two life stages, one where small, swimming larvae fasten to a surface and develop into fixed polyps, and a second where the mature polyps begin to bud off (strobilate) young nettles (ephyra) which mature into the large bell-shaped medusae that produce eggs and sperm.

The medusa — with its semi-transparent bell and streaming tentacles — is easy enough to see. But the polyp proved more elusive. “People knew what the polyp stage looked like back then,” says Dave Cargo, “but nobody could actually find them in the Bay.”

The problem, he says, is that they weren’t looking in the right places. Like others, Cargo began looking for polyps on hard surfaces, primarily oyster shells, but he found those shells crowded with young oysters and other organisms, which left little room for nettle polyps. Only when he looked at the undersides of those shells did he discover them lurking there.

Now retired from the CEES Chesapeake Biological Lab, he began the first extensive field studies of nettles, studies that described the nettles’ general habitat needs, their salinity tolerance, and their temperature requirements. Unlike many other jellyfish which flourish at ocean salinities, greater than 30 parts per thousand salt, nettles, he found, do best between 7 and 25 parts per thousand.

Beginning in 1960, Cargo began what has become a thirty-year monitoring of sea nettle abundance in the Patuxent River. That monitoring was not, he says, very sophisticated: each day at lunch during July and August, he would walk out on the 200-foot pier at CBL and simply count the number of nettles. His aim was to try and correlate sea nettle prevalence with climatic factors — temperature, runoff, salinity — to see if he could predict the intensity of sea nettle infestations each summer. Though not rigorous by scientific standards, he points out that “after 25 years you have numbers you can hang your hat on.” Houde is more emphatic — “Dave Cargo’s is the kind of long-term data we rarely have. That’s what makes it so important.”

Jellyfish and the Food Web

Some ecologists have hypothesized that, because of changes that have occurred at the bottom of the food chain, the sea nettle and other gelatinous species may be more plentiful in the Bay than when settlers first arrived in the Chesapeake region. According to one argument, the clearing of land and continued development of shorelines have made the Bay more susceptible to runoff of the soil’s natural nutrients and, increasingly, more vulnerable to today’s massive nutrient overloading from human, animal and agricultural wastes. The consequence, most researchers agree, has been explo-
sive growth of phytoplankton, the single-celled plants that thrive on nutrients.

But how has massive phytoplankton growth affected the Bay's food web? For one thing, continuing overenrichment of nutrients, known as eutrophication, has been hypothesized to favor production of microorganisms like bacteria and microzooplankton (protozoans and rotifers) that feed on them. Some ecologists have proposed that these microscopic zooplankton support gelatinous species more than the "higher" forms of zooplankton, such as copepods, and fish larvae. Has the Bay's eutrophication meant more nettles?

Denise Breitburg is skeptical. She argues that claim the Chesapeake Bay has a greater prevalence of sea nettles now than several hundred years ago simply because of changes at the bottom of the food chain. Estuarine ecosystems are not that simple, she says. "You have to look at details of trophic interactions higher up in the food chain," she argues, "and the behaviors of the various species involved.

There is some evidence in her recent studies, for example, that nettles can tolerate low dissolved oxygen concentrations better than the larval fish or zooplankton they feed on. Though nettles were impaired, says Breitburg, they continued to feed at significantly high rates.

The prevalence of sea nettles themselves appears to be conditioned by the timing and intensity of spring rains, which in turn affect the budding of ephyrae by polyps. This year, for instance, cold spring temperatures and heavy rains have kept nettle production down — there aren't very many to count at the CBL pier. But these same environmental conditions also affect zooplankton concentrations, larval fish populations and temperature, all of which have ramifications for sea nettle and ctenophore behavior that cascade up and down the rest of the food chain.

Teasing out these ramifications has led Breitburg, Jennifer Purcell and Ed Houde to look closely at how these gelatinous species compete for food, what they consume, what they don't consume, and how they behave under different environmental conditions. In effect, they have been working to quantify predation of sea nettles and other jellies on other Bay inhabitants. Purcell, for example, has done painstaking laboratory experiments to determine how sea nettles feed on oyster and other bivalve larvae. Because peak sea nettle abundance occurs in summer during the oyster spawning season, many scientists had assumed that nettles were consuming large numbers of the swimming larval oysters.

Research in Purcell's laboratory, however, has shown that sea nettles may help oysters. Oysters have a larval stage that spends about two weeks swimming in the Bay before they settle to grow into mature oysters. During this swimming stage, they are vulnerable to predators such as sea nettles and comb jellies. Although sea nettles can catch the larval oysters, Purcell discovered much to her surprise, that they spit them out undigested and unharmed. These findings may be one of the first reported evidence of oyster larvae passing alive through a carnivorous predator.

In contrast, comb jellies catch and digest the larvae readily. However, comb jellies are also a favorite food of sea nettles, and they reduce comb jelly populations to zero in the tributaries during the summer when oyster larvae are most abundant. "Therefore," says Purcell, "sea nettles appear to protect oyster larvae from a major predator."

Gelatinous species also feed on small zooplankton, fish eggs and larval fish. How much these species consume is especially important for bay anchovy, says Houde, which are hunting the same prey. As competitors with the anchovy, which are an important food for striped bass, bluefish and other Bay species, jellyfish could eventually have indirect impacts on their production. But explaining just what those impacts are will depend on experiments that detail predation rates among jellyfish and anchovy. In one related experiment, Houde — working with Jim Cowan, now at the University of South Alabama — found that the gelatinous predators "have the potential to consume 20 to 40 percent of the daily eggs and larvae of bay anchovy in mid-Chesapeake Bay." He also found, however, that when ctenophores and nettles occur in the Bay at the same time, there is a decrease in predation on larvae. This decrease may be due to diminished consumption of fish larvae by nettles because of their heavy consumption of ctenophores.

With sea nettle populations in the Chesapeake down this summer, you would guess, says Houde, that daily mortality of fish eggs and larvae would be down. But, he adds, "things are so variable — there could be compensating factors." In other words, the ever-changing food web may account for the decrease of one predator with the increase of another.

What Does the Future Hold?

Whether the Chesapeake Bay has more sea nettles now than in the past remains a provocative question, but one that seems too premature to answer. "I could not have predicted some of our research results from theory," says Denise Breitburg. "Our studies have confirmed my feeling that you have to look at the details of these trophic interactions, the behaviors of the different species involved." In short, there is simply a great deal we do not yet know about jellyfish, says Jennifer Purcell.

As much as we might like to blame the presence of jellyfish in the Bay on increased nutrients or other changes, it will take a good deal of study before we fully understand the role of jellyfish in the Bay ecosystem.
Jellyfish, continued

tenderizer to make a paste and smear it on the inflamed area. Meat tenderizer is an enzyme which breaks down proteins. Jellyfish ven-om is made of protein and is consequently destroyed by the meat tenderizer.

Few Predators, No Good Controls

The sea nettle is unusual in its ability to live in low salinity water. Most jellyfish species live at ocean water salinity, about 35 parts per thousand, while the sea nettle prefers waters with as little as 12 parts per thousand salinity. This means that it usually has estuaries like the Chesapeake Bay to itself without serious competition from most other jellyfish. In fact, sea nettles eat their most abundant competitors in the Bay, comb jellies, or ctenophores.

Adult sea nettles have few natural predators in the middle reaches of the Chesapeake Bay. Sea turtles, which are known to eat Portuguese man-of-war and some other jellyfish, rarely come far into the Bay. And fish species (harvestfish and butterfish) observed feeding on sea nettles prefer waters of higher salinity.

A lot of effort was spent on jellyfish control in the Bay in the 1960s, but no method was very successful. Nets and bubble screens were used to keep them away from swimming areas. The jellyfish tended to clog the nets and to break into pieces that continued to sting. The bottom-living polyp stage also was targeted. Chemicals that killed the polyps also killed many other organisms, and so were unsuitable. Researchers found a small species of sea slug that ate polyps, but culture methods to produce large numbers of the sea slugs were unsuccessful and they also did not live well at the low salinities favored by the polyps.

The only thing known to reduce jellyfish populations is an influx of fresh water. Experiments have shown that sea nettles reproduce poorly at less than 7 parts per thousand salinity. Hurricane Agnes in 1972 caused the greatest reduction of jellyfish populations in recent years.
On-Line Database for Bay Issues

Five environmental, government and public interest groups have begun to construct an on-line public access database called the Chesapeake BIOS (Bioregional Information On-Line Service) to make information about the Chesapeake Bay and the related Susquehanna and Potomac River basins available through the Internet computer network.

The Chesapeake BIOS is designed to promote cooperative efforts between environmental organizations, community groups and local officials. The database will provide an on-line environmental database with reviews and updates on the region’s physical and biological resources; current information on regional environmental activities and organizations; and free access to government environmental repositories, including EPA’s on-line library and the U.S. Geological Survey’s on-line database.

BIOS sponsoring groups include the Alliance for the Chesapeake Bay, the Northern Virginia Soil and Water Conservation District, the Northern Virginia Environmental Network, the Potomac Watershed Network and the George Mason University Global Change Computing Facility.

The Chesapeake BIOS is housed on a special “gopher” in the Biology Department at George Mason University. For those unfamiliar with Internet terminology, a “gopher” is a place where Internet users from anywhere in the world can stop off and browse through information made available by a local sponsoring computer system, in this case George Mason University.

The Chesapeake BIOS is a database under construction. The organizers are looking for publications, fact sheets and other information they can make available about the Bay region, including the Susquehanna and Potomac River basins. They are also inviting organizations and individuals to contribute their suggestions, information, time or financial resources to building the BIOS gopher. Dan Sklarew, a computing specialist for life sciences in the Biology Department, is coordinating the Chesapeake BIOS project. To become involved in BIOS, or to find out how to use it, contact Sklarew via Internet at dsklarew@gmu.edu or at (703) 993-1043 (voice), (703) 993-1046 (fax) or by writing: Department of Biology, George Mason University, Fairfax, Virginia 22030-4444.

Knauss Graduate Fellowships

Maryland Sea Grant is still accepting applicants for the Dean John A. Knauss Marine Policy Fellowship program for 1995. The Fellowship program matches highly qualified graduate students with hosts in the legislative branch, the executive branch or appropriate associations or institutions located in the Washington, D.C. area for a one-year paid fellowship. The stipend paid to fellows was recently raised to $30,000 per year. Other expenses covered include travel funds, moving costs and health insurance.

Selection is made competitively from applications submitted by state Sea Grant directors to the National Sea Grant Office. Any student currently in a graduate or professional degree program in a marine-related field at an accredited institution of higher education may apply through the director of any state Sea Grant program. Fellowships applications for 1995 are due by September 1, 1994. For more information, contact Susan Leet, Maryland Sea Grant College, (301) 405-6375.

D’Elia Returns to Sea Grant

Christopher F. D’Elia has returned as director to the Maryland Sea Grant College after serving briefly as Provost and Vice-President for Academic Affairs of the University of Maryland Biotechnology Institute. Dr. D’Elia, a professor at the University’s Center for Environmental and Estuarine Studies’ Chesapeake Biological Laboratory in Solomons, Maryland, asked to be reinstated as director because of difficulties within the University of Maryland System in reconciling his academic appointment during his service as Provost. “I am delighted to return to Sea Grant,” says D’Elia, “a program that I know well and love, and that I have been privileged to have served in the past.”

Maryland Sea Grant is one of 29 Sea Grant colleges in coastal and Great Lakes states. The National Sea Grant College Program was established by an act of Congress in 1966. Maryland Sea Grant began as a coherent program in 1977, winning Sea Grant College status in 1982. “Maryland Sea Grant’s major objectives,” says D’Elia, “have been to support innovative estuarine, coastal and marine research and to conduct wide ranging education and outreach programs that benefit the citizens of Maryland, the mid-Atlantic region and the nation. I am proud of what Maryland Sea Grant has accomplished in nearly twenty years of service,” he says, “and I look forward to continuing our work in the years to come.”
Mid-Atlantic Research Plan

The Environmental Protection Agency in June approved the Mid-Atlantic Regional Marine Research Plan submitted for review by EPA and the National Oceanic and Atmospheric Administration early this year. The plan was reviewed by the Executive Committee for the Regional Marine Research Program (MARMRP), a national program authorized by Congress to encourage coordinated scientific research across state and regional jurisdictions.

An approval letter from EPA Administrator Carol Browner gave the plan high ratings: "The reviewers noted that the plan provided a carefully fitted research program to address contemporary high priority research needs, taking into account a comprehensive and detailed analysis of current and previous work in the region. The high quality of the plan commendably reflects the effort you, your Board and support personnel expended on this effort."

Maryland Sea Grant Director Chris D'Elia is chairman of the MARMRP governing board which established the program and hired Douglas Lipton to serve as director and Sherri Cooper as assistant director of program. Cooper also had primary responsibility for assembling and writing the plan under the direction of the governing board.

While the future of the program is uncertain — Congress approved funds only for the regional research program for the Gulf of Maine — the plan should serve, says D'Elia, as a very useful model for guiding future research in the Mid-Atlantic region. To receive a free copy of the MARMRP research plan, contact Maryland Sea Grant at (301) 405-6376.

Statistical Consultation

Researchers who need advanced technical assistance to plan and set up statistical analyses, plot data and create accurate and informative graphs and tables from their data now have somewhere to go for help. The Maryland Sea Grant Computer facility is offering the following services:

- Advice on how to form testable hypotheses, experimental design and sample size
- Help with designing data coding schemes and entering and proofing data
- Interpretation of results for statistical and biological meaning
- Instruction in using SAS or other relevant software for analyses
- Ways to present the data in tables or graphs for papers, posters and talks

These services are available to graduate students, faculty, staff and other researchers. Collaboration and consultation are available for thesis work, grant proposals, publications, presentations and other projects. When appropriate, researchers may pay for charges for extended projects with a University fund and budget or by other means. For more information, contact Dan Jacobs by telephone, (301) 405-6379, or by electronic mail, jacobs@mbimail.umd.edu.

Protein Sequencing Lab Services

The Medical Biotechnology Center (MBC) located at the University of Maryland, Baltimore City, has a Protein Sequencing Lab which offers a comprehensive range of high-quality analytical research and service. Experienced protein chemists provide routine analyses, consultations, assistance with grant preparation and full-scale collaborations on protein structure-function studies. Services include: peptide/protein sequence analysis, database homology searches, peptide mapping by HPLC and amino acid analysis. For a limited time period, beginning August 1, 1994, the Protein Sequencing Lab will synthesize peptides for UMBI researchers at a special low cost of $15.00 per residue. For more information, contact Lucinda Jack at (410) 706-8101.

Sea Grant Hires Media Specialist

The National Sea Grant network has hired a new national media relations specialist who will work out of the Maryland Sea Grant office in College Park. Ben Sherman, a former account executive with Gehrung Associates educational media relations firm, accepted the position in May.

While at Gehrung Associates, Ben handled 11 college/university accounts, leading the firm in media placement and securing his clients exposure in such outlets as New York Times, Wall Street Journal, Chicago Tribune, ABC World News Tonight, CBS This Morning, National Public Radio and Reuters.

Ben's job will be to reach the national and regional media on a regular basis — something that individual Sea Grant communicators do not have the time and contacts to do, according to Kathy Hart, chair of the communicators' executive committee that hired Sherman.

Ben can be reached at the Maryland Sea Grant office, by phone (301) 405-6381, by fax (301) 314-9187, or on Internet: Sherman@mbimail.umd.edu.
End Notes

Noteworthy

- **Position Announcement.** Assistant to the Director, MEES Program, UMCP. The appointee will assist the MEES Director with supervision of teaching assistants and part-time office assistants, advising current and prospective students, corresponding with MEES faculty and preparing publications and databases as well as scheduling courses and meetings. Qualifications include experience with graduate education, a B.S., B.A. or M.S. degree, preferably in the environmental life sciences and word processing and communication. Applications, due September 9, 1994, will be considered until the position is filled. Send a statement of interest, c.v. and three references to: Dr. Kenneth P. Sebens, Director, MEES Program, Symons Hall, Room 0220, University of Maryland, College Park, Maryland 20742.

- **Grants Available.** Maryland Industrial Partnerships (MIPS). Applications are currently being accepted by the MIPS program, which awards matching grants to Maryland businesses to make use of the resources of the University of Maryland for product or process development designed to meet specific needs. Businesses can qualify for as much as $70,000 ($50,000 for start-up firms) in grant awards, which may be renewable. The deadline for the next round of applications is October 18, 1994. For more information, contact the MIPS program office at UMCP, (301) 405-3891.

Publications

- **Air Pollutants and our Waters.** Deposition of Air Pollutants to the Great Waters, First Report to Congress. (May 1994.) This report details the role of air deposition of toxics in the Great Lakes, Lake Champlain, Chesapeake Bay and other coastal waters. It is a compilation of existing information and is the first time EPA has analyzed such information in a single document. The study is the first in a series of biennial reports that will assess the contribution of atmospheric deposition to these waters, the environmental and public health effects caused by the deposited pollutants, the sources of these pollutants and the water quality standards violations that may have resulted from deposition of air pollutants. Copies are available by calling (919) 541-5648. Ask for document EPA-453/R-93-005. For further technical information, contact Amy Vasi at (919) 541-0107.

- **Ecosystem Restoration.** Toward a Watershed Approach: A Framework for Aquatic Ecosystem Restoration, Protection and Management. (22 pp, January 1994.) This Coastal America publication answers the questions: What is a watershed? How do we affect watersheds and their living resources? What is being done now to protect and restore natural resources on a watershed level? How can this restoration and protection be done more effectively? What can individuals do to protect their watershed? Available free from: Coastal America Office, (202) 482-5483, fax, (202) 482-0714.

- **North Atlantic Fish Species.** Distribution and Abundance of Fishes and Invertebrates in North Atlantic Estuaries. (222 pp, May 1994.) This report, from NOAA's Estuarine Living Marine Resources (ELMR) program, presents information on the spatial and temporal distribution and relative abundance of 58 fish and invertebrate species in 17 estuaries along the Atlantic coast from Massachusetts to Maine. Order copies (request ELMR Report #13) from: Stephen H. Jury, Biogeographic Characterization Branch, NOAA, Silver Spring, Maryland, telephone (301) 713-3000, ext. 185, fax (301) 713-4384, Internet: sjury@seamail.nos.noaa.gov.

- **Pollution.** How Estuaries Are Polluted. Understanding the causes of coastal contamination is the first step to finding solutions to pollution. This eye-catching, full-color poster shows how industries, farms, residential areas and motor vehicles all contribute to the pollution of estuaries. The sturdy 11" by 17" poster was adapted from a graphic by U.S. News and World Report and produced by Connecticut Sea Grant in conjunction with the Maritime Center at Norwalk. It's an excellent resource for teachers and environmental groups. Available for $2.00 from Connecticut Sea Grant, University of Connecticut, 1084 Shennecosset Road, Groton, Connecticut 06340-6097.

- **Potential Mussel Invasion.** Zebra Mussel: Present Threat, Future Danger? (June 1994.) This report from the Mid-Atlantic Sea Grant network provides an overview of the zebra mussel infestation nationwide and an assessment of its danger to the Mid-Atlantic region of the United States. Also included is information on research, public education efforts and publications and other materials on the zebra mussel from New Jersey, Maryland, Delaware, Virginia and North Carolina Sea Grant programs and other regional agencies. For a free copy of the report, contact Maryland Sea Grant at (301) 405-6376.

- **Water Quality.** The Natural Resources Institute (NRI) recently published the fourth annual Water Quality Research Status Report — 1993. This 100-page report represents the efforts of scientists at NRI, located at the Beltsville Agricultural Research Center, U.S. Department of Agriculture, and addresses a broad range of approaches to improve our understanding of the nation's water quality problems. To request a copy of this report, contact the Natural Resources Institute, (301) 504-7030.
SEPTEMBER

8-9 — Environmental Finance Conference
College Park, Maryland. Environmental protection and restoration can place serious budgetary demands on small municipalities as well as on states. The "First Annual Mid-Atlantic Conference on Environmental Finance" will offer representatives of small and large local governments some creative approaches to financing community projects which have an environmental impact, such as waste water, drinking water and storm water systems. For a more detailed conference summary, see page 4 of this newsletter. Conference registration is $175.00; grants are available for students. For information, contact Beth Hickey, Coordinator, Environmental Finance Center, at (301) 405-6383, fax (301) 314-9581.

17 — Estuaries Day '94
York River State Park, Croaker, Virginia. Estuaries Day, which kicks off CoastWeeks, a three-week celebration of our nation's coastal resources, will be held at the Taskinas Creek Estuarine Research Reserve. Activities include an ecology cruise, canoe trip, naturalist tours, fossil hikes and kids' activities. The cost is $2.00 per car, $8.00 per bus. For more information, call the Research Reserve at (804) 566-3036.